
Journal of Nuclear Materials 390–391 (2009) 425–427
Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier .com/locate / jnucmat
Shearing effects on density burst propagation in SOL plasmas
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SOL turbulence is characterised by intermittent ballistic transport of density fronts. The interaction of
such density structures with velocity shear layers is found to yield shearing effects over scales that are
comparable to those of the fronts. Enhanced diffusion transport governed by the thinning of the radial
extent of the density structure governs the decay of such a structure over a Dupree time. Velocity shear
layers extending poloidally over a fraction of the poloidal wave length can also exhibit a stopping capa-
bility due to the collapse of the radial velocity within the shear layer. The penetration of the density struc-
ture within such a barrier is of the order of five hybrid Larmor radius.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

A key issue for many aspects of the operation of the new gener-
ation of long pulse devices is that of the plasma flux to the wall of
the main chamber. Indeed, it has been shown that turbulence as
well as ELMs are characterised by long range propagation of den-
sity bursts, hence leading to an intermittent extension of the SOL
width [1,2]. These events thus tend to blur the separation between
the main chamber and the divertor. While there is ample experi-
mental evidence that backs the existence of such density bursts,
it is very hard to predict the associated fluxes in the ITER case. In-
deed, this transport mechanism is based on the generation of self
organised fronts combining a density burst and an electrostatic di-
pole that can only be described correctly from first principle plas-
ma turbulence models.

Saturation of core turbulent transport by the self generated zo-
nal flows is now a well established paradigm of core transport [3].
When considering the SOL turbulence this process is more difficult
to identify since the poloidal symmetry is lost so that the concept
of zonal flows does not hold. However, it can be seen in the simu-
lations that shearing mechanisms still prevail but appear to result
from interactions between the outgoing density burst and poloidal
flow patterns that are generated in the wake of prior bursts [4]. The
scope of this paper is to analyse the interaction between the den-
sity fronts and sheared poloidal flows in order to determine how
the front ballistic motion is impeded. The paper is organised in
three parts. In Section 2 the model and key properties are recalled.
ll rights reserved.

ndrih).
The underlying Hamiltonian properties are used in Section 3 to de-
scribe local barrier effects. Finally, the stopping capability of those
layers is addressed in Section 4. Discussion and conclusion are
found in Section 5.
2. Interchange model of SOL turbulence

We address SOL transport where turbulence ids governed by
the SOL interchange instability [5]. We restrict the analysis to the
density at constant temperature in the cold ion limit. The system
is governed by two equations, one for the normalised density field
and the other for the normalised electric potential. The flute
assumption allows one to simplify the parallel transport which
then takes the form of the loss terms at the sheath. Space coordi-
nates, x and y, respectively the radial and poloidal coordinates,
are normalised to the hybrid Larmor radius qs, q2

s ¼ Te=mi (Te is
the electron temperature and mi is the ion mass ratio), time to
the ion cyclotron frequency 1/Xi. Although very simplified, this
system, when flux driven, appears to be generic of SOL transport
[6]

ð@t þ f/g � Dr2
?ÞLog ðNÞ � Dðr?Log ðNÞÞ2 ¼ �reðK�/Þ þ S=N ð1aÞ

ð@t þ f/g � mr2
?Þr2

?/þ g@yLog ðNÞ ¼ r ð1� eðK�/ÞÞ ð1bÞ

In this system the bracket term f/g stands for the Poisson bracket,
the Hamiltonian being the electrostatic potential /, and represents
the ExB convection. The various control parameters are the small
scale transverse diffusion of particles, D, and velocity, m, the average
curvature drive, g, the parallel sheath loss term r, and the potential
K. The latter can depart from the floating potential when a biasing
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procedure is used. In particular, one can implement the structure
presented in the following analytical calculation to perform the cor-
responding simulations. Only the source term on the right hand side
of Eq. (1a) departs from a Log(N) dependence so that LogðNÞ ap-
pears to be the appropriate field. Indeed, the Vlasov equation, from
which stems most of the terms of this equation, is homogeneous
with respect to the distribution function and hence the density. This
means that the density can be multiplied by any constant with no
change of the equation. Consequently, the suitable representation
of the density field is Log ðNÞ except when collisional transport or
non-linear source terms are dominant. In the present model, the
source term, localised in a narrow radial region, does not depend
on the density. Departure from a Log ðNÞ behaviour can be expected
in that region. Conversely, properties stemming from this LogðNÞ
dependence should govern most of the transport properties of the
system. In particular, Gaussian fluctuations of LogðNÞ will lead to
a Lognormal PDF for the density. Such a skewed distribution func-
tion, reported experimentally and in simulations, can then be con-
sidered to be a signature of Gaussian fluctuations Let us now
consider the parallel loss terms depending on the parameter r. In
the vorticity equation, this term stands for the characteristic time
of parallel current losses out of a volume where the flute assump-
tion is assumed to hold. When the parallel extent of this volume
is smaller than the full connexion length between the limiting sur-
faces, the sheath loss term does not hold and the loss term governed
by the plasma resistivity must be used. In fact, the latter regime will
only be met when the collision frequency of the electrons is larger
that the electron transit time, a situation that does not prevail for
the hot SOL plasmas of interest as in JET or Tore Supra [7]. Regard-
ing the density field, where one must take into account the ion tran-
sit time, the use of a sheath parallel loss term for the particles is
more questionable. However, it can be shown that when the density
structure is localised in the parallel direction, then the particle flux
out of this structure is governed by a density front propagation in
the parallel direction. This leads to a parallel loss comparable to
the sheath boundary condition [8]. As a consequence, a departure
from the flute conditions does not require a major change in the
present model.
3. Propagation of a density front into a velocity shear layer

Let us decouple the evolution of the density front from that of
the vorticity. The imposed electric potential K is a combination
of two superimposed structures, KsðyÞ ¼ �/s sinðkyÞ and KzðxÞ ¼
/z expð�ðx� xzÞ2=ð2D2

ZÞÞ. The s subscript refers to streamer while
the z subscript refers to zonal although the imposed electric poten-
tial does not originate from the basic mechanisms that actually
sustain streamers and zonal flows. The Poisson bracket term in
Eq. (1a) governs the convection of the density field. It combines
therefore the radial convection with wave vector k and a velocity
shear layer localised at x ¼ xz and with an extent Dz. For such a
poloidal flow, the shearing rate is also related to the width of the
shear layer Dz. The ExB convection of the density is then governed
by the Hamiltonian equations. It is important to note that taking
into account a space dependence of the magnitude of the magnetic
field (here found in the Larmor radius normalisation) requires to
incorporate a drift term in the parallel velocity so that the parallel
dynamics also depend on the transverse electric field. The problem
cannot then be reduced to the 2D cross-field problem:

_x ¼ VEx ¼ �@y/; _y ¼ VEy ¼ @x/ ð2Þ

In the region such that jx� xzj >> Dz the sheared poloidal flow is
negligible so that the motion of the density structure is only gov-
erned by the radial velocity VEx ¼ k/s cosðkyÞ Provided the scale of
the density structure Dy is small, kDy << 1, the radial velocity is
constant VEx � Vs ¼ k/s. Let us consider a circular density structure
such that x2

0 þ y2
0 ¼ D2

0 at t ¼ 0. If the initial radial position is away
from the poloidal shear layer this, structure will drift towards the
shear layer at constant velocity. Upon reaching the shear layer the
density structure will change shape, but this effect will take place
at constant electric potential determined by the initial condition. In-
deed, according to the equations of motion, Eq. (2) the potential / is
conserved as well as the surface of the density structure S ¼ D2

0.
With the assumptions discussed above, namely jkyj < p=2, xz�
x0 >> Dz and for a sawtooth approximation of Ks one then obtains:

x ¼ x0 þ Vst; y ¼ y0 þ
/z

k/s
expð�ðx� xzÞ2=ð2D2

ZÞÞ ð3aÞ

ðx� VstÞ2 þ ðy�
/z

k/s
expð�ðx� xzÞ2=ð2D2

ZÞÞÞ
2 ¼ D2

0 ð3bÞ

Furthermore, if the maximum potential of the shear layer /z is lar-
ger than the maximum of the electric potential away from the shear
layer, /s, then no structure that originates from the region distant
from the shear layer can cross the shear layer. Such a structure will
get elongated a shifted poloidally until it reaches the region
jkyj > p=2 where the radial velocity reverses sign and the structure
will drift radially out of the shear layer back towards its initial radial
position. This provides a criterion for the existence of a transport
barrier governed by a velocity shear layer. The conservation of the
electric potential during the motion then yields the closest ap-
proach distance to the centre of the shear layer:

xz � x
Dz

¼ 2Log
/z

/s

� �� �1=2

ð4Þ

One thus finds that the density structure is convected by the strea-
mer like potential towards the shear layer, is elongated poloidally at
constant cross-field surface and then reverses velocity as it reaches
the point jkyj > p=2. The density structure thus bounces back and
the shape changes reverse so that the density structure recovers
its initial shape as it leaves the shear layer. Although several simpli-
fications have been introduced to obtain Eq. (3), the evolution of the
shape of the density contour given in Eq. (3b) remains difficult to
analyse. To obtain the leading order change in shape, let us consider
a linear shear layer where the velocity Vz and the velocity shearing
rate 1=sz ¼ dVz=dx are constant, hence _x ¼ 0 and _y ¼ Vz þ x=sz. In
this calculation, the density structure is initiated in the velocity
shear region with negligible radial velocity so that the shearing ef-
fect is time independent. With these assumptions one obtains the
time dependent shape of the density structure x2 þ ðy� Vzt�
xt=szÞ2 ¼ D2

0 and its poloidal extent Dy (defined as half the distance
between the two points with derivative dy/dx = 0).

Dy

D0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðt=szÞ2

q
ð5Þ

The half radial extent of the structure can be deduced from the con-
served surface DxDy ¼ D2

0. The structure is thus thinned in the radial
direction by the shear layer.
4. Stopping capability of the shear layer

In order to address the stopping capability of the shear layer
one must introduce another process that will destroy the coherent
structure. Chaotic mixing due to the interaction between several
shear layers can provide such a mechanism; rather, we concentrate
here on the diffusion process that does not require specific proper-
ties of the shear layers. In contrast to the surface of the density
structure, one finds that the perimeter of the contour is not con-
stant and behaves like 2Dyð1þ D2

0=D
2
yÞ while the poloidal density

gradient will scale like 1=Dy and the radial density gradient like
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Dy=D
2
0. These geometrical properties will boost the diffusion pro-

cess through the increase of the gradient in the radial direction
and an increase of the surface transverse to that gradient. The
net particle outflux, of the order of DnL==Dy=Dx, will govern the de-
crease of the number of particles within the density contour
@tðnL==D

2
0Þ. Combining these expressions, one finds that the density

within the contour will decay exponentially, dnðtÞ ¼ dnðt ¼
0Þ expð�t=sd � t3=ð3s3

DÞÞ, where the diffusive time scale is
sd ¼ D2

0=D and sD, the Dupree time is sD ¼ ðsds2
z Þ

1=3. The thinning
of the structure by the shearing effects governs the enhanced dif-
fusive outflux and leads to the Dupree time [9]. Given the values
of the parameters chosen for the simulations, one finds
sD=sd � 1=20. In the turbulent self organised case with shear layers
generated in the wake of prior fronts, one finds that the poloidal
and radial Mach numbers are comparable, typically in the range
of 0.03. The Dupree time is of the order of sDXi � 1500 so that
one finds that the poloidal distance covered by the density struc-
ture before its collapse is LD ¼ sDMh � 45qs � 13:5=kh. When con-
sidering a velocity shear barrier, the effect of diffusion is twofold.
It governs a rapid depletion of the density structure but also allows
particle transport through the barrier. For the same parameter val-
ues as used above, one finds that the coherent density structure
will diffuse over typically 3qs hence � Dz=3. Since the front struc-
ture penetrates into the barrier, see Eq.(4), one finds that the elec-
tric potential of the velocity shear layer must be 25 % higher than
the electric potential of the front dipole to ensure a proper trans-
port barrier despite the diffusion transport through the barrier.

Going one step further when analysing the stopping capability
of a velocity shear layer, one must take into account the impact
of the shear layer on the build-up of the electrostatic dipole asso-
ciated to the density front. Indeed, as the front is sheared and its
poloidal extent increased, the drive term of the vorticity genera-
tion, the g term introduced in Section 2, yields a decreasing contri-
bution that scales like D0=Dy. The latter effect slows down the
radial motion of the density structure and thus increases the rela-
tive efficiency of the velocity shear layer. Provided the vorticity
build-up is governed by the g term only, the radial velocity is given
by VEx � gdn

n0

� �
dt

1þD2
y=D

2
x
. Assuming that the time dt for the vorticity

build-up is governed by the radial motion of the front, hence
dt ¼ Dx=VEx, one finds that: _X ¼ VEx � clinearFðD0=DyÞ. The radial
velocity of the density front is thus governed by the linear growth
rate of the system clinear � ðgdn=n0D0Þ1=2 combined to a geometrical
effect that strongly reduces the growth rate, FðD0=DyÞ ¼
ðD0=DyÞ1=2

=ð1þ ðDy=D0Þ4Þ. The decay of the radial velocity of the
density contour is governed both by the density decay, and by
the evolution of the geometry of the contour that reduces the
polarisation of the density structure. Let us analyse the stopping
capability governed by the latter effect, hence within the approxi-
mation of a long diffusion time compared to the characteristic
shear time, sd >> sz. A simplification of the radial displacement
equation is readily obtained when D4

y >> D4
0, leading to

FðD0=DyÞ � ðD0=DyÞ5=2. Upon time integration, the position of the
density contour X is given by:

XðsÞ ¼ clinear

dVz=dx
sffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p 1� s2

3ð1þ s2Þ

� �
ð6Þ

where s ¼ t=sz. The asymptotic time limit is readily computed lead-
ing to X� ¼ 2

3
clinear

dVz=dx, the maximum penetration distance of the density
structure within the velocity shear layer is about 5qs and thus com-
parable to half the radial width of the shear layer. In such a
turbulent regime, this indicates a strong stopping capability. Fur-
thermore, when computing the poloidal displacement during the
stopping process one finds that it is of the order of 1=kh.
5. Discussion and conclusion

SOL turbulent transport is characterised by strong fluctuations
and intermittent propagation of density structures associated to
electrostatic dipoles. The paradigm transport properties for such
a system are strongly skewed PDFs associated to ballistic transport.
It is shown here that the relevant field is the logarithm of the den-
sity that exhibits Gaussian fluctuations. Furthermore, the wake of
density fronts can generate localised velocity shear layers that
can strongly impact the front propagation. First, one finds that such
layers can appear as transport barriers. Taking into account the dif-
fusion process, one finds that the poloidal velocity shear will en-
hance the diffusive process leading to the Dupree life time for
the density structure. Finally, it is found that the velocity shear
layer can stop the radial motion of the density front over a very
short radial distance (5 hybrid Larmor radii). Such a localised inter-
action between a density front and a shear layer only requires that
the latter extends over a fraction of the poloidal wave length of the
turbulence. In such a framework, the transport associated to the
density structures appears like percolation where the media evolu-
tion strongly depends on the sub and over dense structures but
also on the localised velocity shear layer build-up via the Reynolds
stress. For such hot plasmas with weak damping of the latter flows,
the blob paradigm appears to be more complex than usually con-
sidered, leading to significant non-linear regulation of the bursts
of density. As pointed out by one of the referees, the correlation be-
tween local measurements of the poloidal and radial electric fields
would allow one to test the shearing mechanism of density fronts
proposed in this paper.
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